
大數(shù)據(jù)分析基于Hadoop與Mahou培訓(xùn)
第一講大數(shù)據(jù)挖掘及其背景
1)數(shù)據(jù)挖掘定義
2)Hadoop相關(guān)技術(shù)
3)大數(shù)據(jù)挖掘知識(shí)點(diǎn)
第二講 MapReduce計(jì)算模式
1)分布式文件系統(tǒng)
2)MapReduce
3)使用MR的算法設(shè)計(jì)
第三講 Hadoop中的云挖掘工具M(jìn)ahout
1)Mahout介紹
2)系統(tǒng)
3)信息聚類
4)分類技術(shù)
5)其它挖掘
第四講 系統(tǒng)及其應(yīng)用開發(fā)
1)一個(gè)系統(tǒng)的模型
2)基于內(nèi)容的
3)協(xié)同過濾
4)電影案例
第五講 分類技術(shù)及其應(yīng)用
1)分類的定義
2)分類主要算法
3)Mahout分類過程
4)評(píng)估指標(biāo)以及評(píng)測
5)貝葉斯算法新聞分類實(shí)例
第六講 聚類技術(shù)及其應(yīng)用
1)聚類的定義
2)聚類的主要算法
3)K-Means、Canopy及其應(yīng)用示例
4)Fuzzy K-Means、Dirichlet及其應(yīng)用示例
5)路透新聞聚類實(shí)例
第七講 關(guān)聯(lián)規(guī)則和相似項(xiàng)發(fā)現(xiàn)
1)購物籃模型
2)Apriori算法
3)抄襲文檔發(fā)現(xiàn)
4)近鄰的應(yīng)用
第八講 流數(shù)據(jù)挖掘相關(guān)技術(shù)
1)流數(shù)據(jù)挖掘及分析
2)流數(shù)據(jù)模型
3)數(shù)據(jù)抽樣
4)流過濾
第九講 大數(shù)據(jù)挖掘應(yīng)用前景
1)與Hadoop集群應(yīng)用的協(xié)作
2)與RHadoop等其它云挖掘工具配合
3)大數(shù)據(jù)挖掘行業(yè)應(yīng)用展望
六、培訓(xùn)
1, 了解大數(shù)據(jù)處理技術(shù)的相關(guān)知識(shí)。
2,學(xué)習(xí)Hadoop的核心技術(shù)方法以及應(yīng)用特征。
3,深入使用Mahout挖掘工具在大數(shù)據(jù)中的使用。
4,掌握流數(shù)據(jù)挖掘和其它大數(shù)據(jù)挖掘關(guān)鍵技術(shù)。