天天干天天操天天爱-天天干天天操天天操-天天干天天操天天插-天天干天天操天天干-天天干天天操天天摸

課程目錄:Natural Language Processing - AI/Robotics培訓
4401 人關注
(78637/99817)
課程大綱:

    Natural Language Processing - AI/Robotics培訓

 

 

 

Detailed training outline

Introduction to NLP
Understanding NLP
NLP Frameworks
Commercial applications of NLP
Scraping data from the web
Working with various APIs to retrieve text data
Working and storing text corpora saving content and relevant metadata
Advantages of using Python and NLTK crash course
Practical Understanding of a Corpus and Dataset
Why do we need a corpus?
Corpus Analysis
Types of data attributes
Different file formats for corpora
Preparing a dataset for NLP applications
Understanding the Structure of a Sentences
Components of NLP
Natural language understanding
Morphological analysis - stem, word, token, speech tags
Syntactic analysis
Semantic analysis
Handling ambigiuty
Text data preprocessing
Corpus- raw text
Sentence tokenization
Stemming for raw text
Lemmization of raw text
Stop word removal
Corpus-raw sentences
Word tokenization
Word lemmatization
Working with Term-Document/Document-Term matrices
Text tokenization into n-grams and sentences
Practical and customized preprocessing
Analyzing Text data
Basic feature of NLP
Parsers and parsing
POS tagging and taggers
Name entity recognition
N-grams
Bag of words
Statistical features of NLP
Concepts of Linear algebra for NLP
Probabilistic theory for NLP
TF-IDF
Vectorization
Encoders and Decoders
Normalization
Probabilistic Models
Advanced feature engineering and NLP
Basics of word2vec
Components of word2vec model
Logic of the word2vec model
Extension of the word2vec concept
Application of word2vec model
Case study: Application of bag of words: automatic text summarization using simplified and true Luhn's algorithms
Document Clustering, Classification and Topic Modeling
Document clustering and pattern mining (hierarchical clustering, k-means, clustering, etc.)
Comparing and classifying documents using TFIDF, Jaccard and cosine distance measures
Document classifcication using Na?ve Bayes and Maximum Entropy
Identifying Important Text Elements
Reducing dimensionality: Principal Component Analysis, Singular Value Decomposition non-negative matrix factorization
Topic modeling and information retrieval using Latent Semantic Analysis
Entity Extraction, Sentiment Analysis and Advanced Topic Modeling
Positive vs. negative: degree of sentiment
Item Response Theory
Part of speech tagging and its application: finding people, places and organizations mentioned in text
Advanced topic modeling: Latent Dirichlet Allocation
Case studies
Mining unstructured user reviews
Sentiment classification and visualization of Product Review Data
Mining search logs for usage patterns
Text classification
Topic modelling

主站蜘蛛池模板: 美女国产福利视频 | 久久六月丁香婷婷婷 | 国产精品免费看久久久久 | 久久久精彩视频 | 国产a视频精品免费观看 | 我要看黄色一级片 | 国产免费人成xvideos视频 | 一级无毛片 | 国产成人麻豆tv在线观看 | 高h猛烈做哭bl壮汉受欧美 | 日本欧美韩国一区二区三区 | 久久久久久久久综合影视网 | 一级毛片在线观看免费 | 亚洲欧美中文日韩v在线观看 | 欧美一级α片毛片免费观看 | 免费在线看黄色 | 精品福利一区二区免费视频 | 国产一区二区三区在线观看免费 | 啪一啪在线| 1024精品| 欧美大片全黄在线观看 | 2020国产微拍精品一区二区 | 青青久久网 | 美日韩黄色大片 | 天天拍久久 | 色婷婷资源网 | 国产精品免费一区二区区 | 天天做夜夜操 | 青春草国产成人精品久久 | 日本一级毛片视频无遮挡免费 | 国产精品福利午夜在线观看 | 日韩中文字幕在线视频 | 国内精品一区视频在线播放 | 97午夜| 自偷自偷自亚洲首页精品 | 精品国产免费人成在线观看 | 成人欧美精品大91在线 | 毛片大片 | 九九在线免费观看视频 | 一区二区三区免费在线观看 | 欧美日韩在线观看视频 |